Osmosensing and osmoregulatory compatible solute accumulation by bacteria.
نویسندگان
چکیده
Bacteria inhabit natural and artificial environments with diverse and fluctuating osmolalities, salinities and temperatures. Many maintain cytoplasmic hydration, growth and survival most effectively by accumulating kosmotropic organic solutes (compatible solutes) when medium osmolality is high or temperature is low (above freezing). They release these solutes into their environment when the medium osmolality drops. Solutes accumulate either by synthesis or by transport from the extracellular medium. Responses to growth in high osmolality medium, including biosynthetic accumulation of trehalose, also protect Salmonella typhimurium from heat shock. Osmotically regulated transporters and mechanosensitive channels modulate cytoplasmic solute levels in Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, Lactobacillus plantarum, Lactococcus lactis, Listeria monocytogenes and Salmonella typhimurium. Each organism harbours multiple osmoregulatory transporters with overlapping substrate specificities. Membrane proteins that can act as both osmosensors and osmoregulatory transporters have been identified (secondary transporters ProP of E. coli and BetP of C. glutamicum as well as ABC transporter OpuA of L. lactis). The molecular bases for the modulation of gene expression and transport activity by temperature and medium osmolality are under intensive investigation with emphasis on the role of the membrane as an antenna for osmo- and/or thermosensors.
منابع مشابه
Regulation of compatible solute accumulation in bacteria.
In their natural habitats, microorganisms are often exposed to osmolality changes in the environment. The osmotic stress must be sensed and converted into an activity change of specific enzymes and transport proteins and/or it must trigger their synthesis such that the osmotic imbalance can be rapidly restored. On the basis of the available literature, we conclude that representative gram-negat...
متن کاملThe effect of salt stress on ion accumulation, photosynthesis and compatible solute contents in four grapevine (Vitis vinifera) genotypes
Salinity tolerance of four grape genotypes [GharaUzum, Hosseini, AghUzum and Keshmeshi] was studied under various salinity levels (25, 50 and 100 mM NaCl). As a result, growth indices were significantly (P<0.05) reduced by salinity, whereas Cl- and Na+ contents in the plant parts were increased. Cl- accumulation exceeded than that of Na+ in all treatments. Among the genotypes studied, GharaUzum...
متن کاملOsmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology
Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain comp...
متن کاملEffect of compatible solutes on survival of lactic Acid bacteria subjected to drying.
Four strains of lactic acid bacteria were investigated to determine if a relationship exists between accumulation of compatible solutes and the ability of cells to survive drying. Betaine was the major solute found in these lactic acid bacteria subjected to salt stress. Survival of cultures subjected to drying was considerably enhanced when this solute was accumulated by cells.
متن کاملProtein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12.
ProP is an osmoregulatory compatible solute transporter in Escherichia coli K-12. Mutation proQ220::Tn5 decreased the rate constant for and the extent of ProP activation by an osmotic upshift but did not alter proP transcription or the ProP protein level. Allele proQ220::Tn5 was isolated, and the proQ sequence was determined. Locus proQ is upstream from prc (tsp) at 41.2 centisomes on the genet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
دوره 130 3 شماره
صفحات -
تاریخ انتشار 2001